Lightweight Deep Neural Network for Chagas Disease Screening Using 12-Lead
ECG Signals

Quenaz B Soares!, Diego A C Cardenas', Felipe M Dias!, Estela Ribeiro!, Jose E Krieger', Marco A
Gutierrez',

"Heart Institute, Clinics Hospital, University of Sao Paulo Medical School, Brazil

Abstract

As part of the George B. Moody PhysioNet Challenge
2025, we employed two lightweight convolutional neural
network architectures based on modified VGG and ResNet
models to detect Chagas disease from 12-lead electrocar-
diogram (ECG) signals. Our preprocessing pipeline in-
cluded resampling to 128 Hz, fixed-length cropping or
zero-padding, bandpass filtering (1-40 Hz), and channel-
wise normalization. To address pronounced class imbal-
ance, we employed a balanced sampling strategy dur-
ing training and used Monte Carlo Dropout at inference
for uncertainty estimation. Evaluated via 5-fold cross-
validation, the best model (LiteVGG-11) achieved an AU-
ROC 0of 0.84240.009 and a recall of 0.725+0.018, but low
precision (0.066+0.002), resulting in a challenge score of
0.41010.009. These results highlight both the potential
and the challenges of automated Chagas disease detection
from ECGs in highly imbalanced datasets. It also indi-
cates the feasibility of lightweight models for scalable and
portable screening solutions in resource-limited settings.
Our model received a Challenge score of 0.240 (ranked
9th out of 40 teams) on the hidden test set.

1. Introduction

Automatic electrocardiogram (ECG) classification holds
promise for aiding in the detection of cardiac abnormali-
ties, including those caused by Chagas disease, a parasitic
illness, which affects millions worldwide and can lead to
severe cardiac complications in its chronic phase. While
early infection is often asymptomatic and treatable, ad-
vanced stages can result in cardiomyopathy, arrhythmias,
and heart failure [|1]. Diagnosis is typically based on sero-
logical tests, which are not always accessible. Since Cha-
gas cardiomyopathy often presents with ECG abnormali-
ties, automated ECG analysis offers a promising tool for
screening.

The George B. Moody PhysioNet Challenge 2025 [[1-3]]
called for open-source algorithms to identify likely cases
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of Chagas disease from 12-lead ECGs, aiming to support
early detection and triage. This paper describes our team’s
approach to this challenge.

2. Methods

2.1. Data

We used the 12-lead ECG dataset ensemble provided
by the challenge [1]]. This ensemble includes the CODE-
15% [4], SaMi-Trop [5]], and PTB-XL [6] datasets. The
CODE-15% dataset contains more than 300,000 12-lead
ECG recordings collected in Brazil, with self-reported
Chagas disease labels. The SaMi-Trop dataset contains
1,631 ECGs from Chagas-positive patients confirmed by
serological tests. The PTB-XL dataset comprises 21,799
ECGs from individuals in Europe, who were presumably
Chagas-negative.

2.2.  Pre-Processing

All ECG recordings were resampled to 128 Hz and ei-
ther cropped or zero-padded to a fixed duration of 10 sec-
onds to ensure uniform input length. A fourth-order But-
terworth bandpass filter with cutoff frequencies of 1-40
Hz was applied to remove baseline wander and high-
frequency noise. Finally, z-score normalization was per-
formed channel-wise, resulting in signals where each lead
had zero mean and unit variance.

2.3. Models

Two lightweight CNN architectures were employed in
this work: LiteVGG [7] and LiteResNet [8]]. Both are
adaptations of computer vision CNNs for 1D signal pro-
cessing, specifically designed for ECG classification. Sev-
eral modifications were introduced to reduce computa-
tional complexity: (i) replacement of standard convolu-
tional layers with depthwise separable convolutions; (ii)
reduction in the number of filters per convolutional layer;
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(iii) use of global pooling layers instead of traditional flat-
tening between the convolutional and dense components;
and (iv) reduction in the number of hidden units in the
dense layers.

Figure [I| illustrates the LiteVGG-11 variant. As in the
original VGG architecture, LiteVGG models differ by the
number of convolutional layers per block. The tested con-
figurations were:

o LiteVGG-11: blocks with [1, 1, 2, 2, 2] layers;
o LiteVGG-13: blocks with [2, 2, 2, 2, 2] layers;
o LiteVGG-16: blocks with [2, 2, 3, 3, 3] layers.

Figure 2] shows the LiteResNet-34 variant. LiteResNet
models differ by the number of residual blocks per module:
o LiteResNet-18: modules with [2, 2, 2, 2] blocks;

o LiteResNet-34: modules with [3, 4, 6, 3] blocks.

2.4. Training Scheme

The dataset was highly imbalanced, with a strong pre-
dominance of the non-Chagas class. To address this, we
implemented a balanced sampling strategy using a Tensor-
Flow input pipeline. The training data was split into two
subdatasets, one for Chagas and one for non-Chagas sam-
ples. During training, batches were constructed by ran-
domly sampling from each sub-dataset with equal prob-
ability (50% each). Both sub-datasets were shuffled and
repeated indefinitely, with shuffling applied prior to each
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Figure 1. LiteVGG-11 architecture.

repetition. This approach ensured consistent class bal-
ance throughout training, regardless of differences in sub-
dataset sizes.

The models were trained using the AdamW optimizer
with a learning rate of 1 x 10~* and a binary cross-entropy
loss. We used a batch size of 64 and trained for 128 epochs.
No data augmentation techniques were applied.

2.5. Inference Strategies

As the goal of this work is to develop an algorithm
for prioritizing patients for confirmatory testing of Cha-
gas disease, we go beyond interpreting the model output
as a probability. Instead, model uncertainty is incorpo-
rated into the inference process, favoring high-confidence
predictions and penalizing those with greater uncertainty.

To account for model uncertainty during inference, we
evaluated several strategies based on Monte Carlo Dropout
(MCD). These strategies aim to improve the robustness of
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Figure 2. LiteResnet-34 architecture.
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Equation Description
| Y = Zfull Deterministic output from a single forward pass with dropout disabled (baseline).
I Yy=12 Mean of the 7" stochastic outputs obtained via MCD.

M y=1(zpau+7)
v y=12z—0.50
\Y% Y = Zfull — 0.50

Average between the deterministic output and the MCD mean.
Lower confidence estimate based on the MCD mean penalized by half its standard deviation.
Lower confidence estimate using the deterministic output in place of the MCD mean.

Table 1. Inference strategies using MCD. Each strategy defines a different way to compute the final logit y based on the
deterministic model output zg,;, the MCD mean Z, and its standard deviation o.

the predicted probabilities by incorporating uncertainty es-
timates derived from stochastic forward passes.

Given an input sample X, we perform 7" = 10 stochas-
tic forward passes through the model with dropout en-
abled, resulting in 7" outputs in logit space:
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From these T'" Monte Carlo samples, we compute the
empirical mean and standard deviation of the logits:
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We also consider the deterministic output of the model,
obtained via a single forward pass with dropout disabled.
This output is denoted as zfy;.

Table [l summarizes the inference strategies evaluated.
Strategy I corresponds to the deterministic baseline, while
the remaining strategies incorporate uncertainty informa-
tion derived from MCD to adjust the output, either by re-
ducing the confidence of uncertain predictions or combin-
ing uncertain and deterministic views.

3. Results

Table [2] shows the challenge scores from a stratified 5-
fold cross-validation. Balanced sampling was applied only
to training folds, while test folds retained their original im-
balance to simulate real-world conditions. LiteVGG-11
consistently outperformed other models across all folds.

Table provides detailed evaluation metrics for
LiteVGG-11 with strategy II—the best official submis-
sion—under the same cross-validation setup, offering fur-
ther insight into predictive performance.

Table [] summarizes challenge scores for the selected
submission across 5-fold cross-validation (public training
set), repeated scoring on the hidden validation set, final
scoring on the hidden test set, and the team’s final ranking.

Model Strategy  Challenge Score
I 0.365 £ 0.006
I 0.379 £ 0.009
LiteResNet-18 I 0.375 £0.010
v 0.378 £0.012
v 0.366 = 0.007
I 0.359 £ 0.017
I 0.370 £ 0.013
LiteResNet-34 1 0.368 £ 0.013
v 0.371 £0.012
\Y% 0.363 £0.017
I 0.408 £ 0.012
I 0.410 = 0.009
LiteVGG-11 1 0411 £0.012
v 0.406 = 0.010
\% 0.407 £0.011
I 0.396 £ 0.008
I 0.401 £0.012
LiteVGG-13 I 0.402 +£0.010
v 0.401 £0.010
\Y% 0.397 £ 0.009
I 0.387 = 0.009
I 0.398 £0.014
LiteVGG-16 11 0.396 £ 0.011
v 0.398 £0.013
A% 0.391 £0.010

Table 2. Cross validation results of the challenge score for
each combination of model and strategy.

Metric Value
Challenge Score 0.410 + 0.009
AUROC 0.842 £ 0.001
AUPRC 0.167 +0.007
Accuracy 0.786 £ 0.012
Precision 0.066 + 0.002
Recall 0.725 £ 0.018
F1-score 0.120 £ 0.003
MCC 0.173 £ 0.002

Table 3. Metrics achieved for the best submission,
LiteVGG-11 model with inference strategy II, at 5-fold
cross validation on the public training dataset.
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Training | Validation Test | Ranking
0.410 £ 0.009 0.372 | 0.240 9/40

Table 4. Challenge scores for our selected entry (team
AIMED), including the ranking of our team on the hid-
den test set. We used 5-fold cross validation on the public
training set, repeated scoring on the hidden validation set,
and one-time scoring on the hidden test set.

4. Discussion

The LiteVGG-11 model combined with strategy II
achieved a challenge score of 0.403 in cross-validation,
demonstrating robust performance across folds. An AU-
ROC of 0.836 suggests good overall discrimination be-
tween Chagas-positive and negative cases across different
thresholds.

However, low precision (0.063) and AUPRC (0.164)
highlight the model’s difficulty in correctly identifying
positives without high false positive rates. This is con-
sistent with the dataset’s strong class imbalance, where
non-Chagas samples dominate. Although recall was rela-
tively high (0.723), the low precision and F1-score (0.116)
point to limited reliability at the default 50% threshold.
The MCC of 0.168, which considers all confusion matrix
terms, also indicates modest overall performance, empha-
sizing the challenge of detecting Chagas disease from ECG
signals under imbalanced conditions.

The drop in challenge scores from training and valida-
tion to the hidden test set highlights limited generalization
capability. This performance gap suggests that the model
may be overfitting to the training distribution or failing to
capture features that generalize well to unseen data.

Improving performance and generalization may require
better handling of class imbalance through advanced sam-
pling, loss functions, or threshold tuning. Incorporating
clinical metadata, applying data augmentation, or explor-
ing richer model architectures may also enhance robust-
ness and precision.

5. Conclusion

Our approach achieved a challenge score of 0.240 in the
hidden test set, ranking 9th out of 40 teams of the George
B. Moody PhysioNet Challenge 2025.

These results highlight the potential of lightweight CNN
architectures for detecting Chagas disease from ECG sig-
nals. Despite encouraging AUROC and recall values, the
low precision and AUPRC underscore the need to reduce
false positives and improve the reliability of positive pre-
dictions. Furthermore, the lightweight architecture of our
model facilitates its integration into portable ECG devices,
offering a promising avenue for scalable Chagas disease
screening in resource-limited settings.
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